导航:首页 > 工业生产 > 工业大数据获取技术有哪些构成

工业大数据获取技术有哪些构成

发布时间:2022-07-17 03:14:41

㈠ 大数据技术有哪些

随着大数据分析市场迅速扩展,哪些技术是最有需求和最有增长潜力的呢?在Forrester Research的一份最新研究报告中,评估了22种技术在整个数据生命周期中的成熟度和轨迹。这些技术都对大数据的实时、预测和综合洞察有着巨大的贡献。
1. 预测分析技术
这也是大数据的主要功能之一。预测分析允许公司通过分析大数据源来发现、评估、优化和部署预测模型,从而提高业务性能或降低风险。同时,大数据的预测分析也与我们的生活息息相关。淘宝会预测你每次购物可能还想买什么,爱奇艺正在预测你可能想看什么,百合网和其他约会网站甚至试图预测你会爱上谁……
2. NoSQL数据库
NoSQL,Not Only SQL,意思是“不仅仅是SQL”,泛指非关系型数据库。NoSQL数据库提供了比关系数据库更灵活、可伸缩和更便宜的替代方案,打破了传统数据库市场一统江山的格局。并且,NoSQL数据库能够更好地处理大数据应用的需求。常见的NoSQL数据库有HBase、Redis、MongoDB、Couchbase、LevelDB等。
3. 搜索和知识发现
支持来自于多种数据源(如文件系统、数据库、流、api和其他平台和应用程序)中的大型非结构化和结构化数据存储库中自助提取信息的工具和技术。如,数据挖掘技术和各种大数据平台。
4. 大数据流计算引擎
能够过滤、聚合、丰富和分析来自多个完全不同的活动数据源的数据的高吞吐量的框架,可以采用任何数据格式。现今流行的流式计算引擎有Spark Streaming和Flink。
5. 内存数据结构
通过在分布式计算机系统中动态随机访问内存(DRAM)、闪存或SSD上分布数据,提供低延迟的访问和处理大量数据。
6. 分布式文件存储
为了保证文件的可靠性和存取性能,数据通常以副本的方式存储在多个节点上的计算机网络。常见的分布式文件系统有GFS、HDFS、Lustre 、Ceph等。
7. 数据虚拟化
数据虚拟化是一种数据管理方法,它允许应用程序检索和操作数据,而不需要关心有关数据的技术细节,比如数据在源文件中是何种格式,或者数据存储的物理位置,并且可以提供单个客户用户视图。
8. 数据集成
用于跨解决方案进行数据编排的工具,如Amazon Elastic MapRece (EMR)、Apache Hive、Apache Pig、Apache Spark、MapRece、Couchbase、Hadoop和MongoDB等。
9. 数据准备
减轻采购、成形、清理和共享各种杂乱数据集的负担的软件,以加速数据对分析的有用性。
10. 数据质量
使用分布式数据存储和数据库上的并行操作,对大型高速数据集进行数据清理和充实的产品。

㈡ 大数据的关键技术包括

大数据开发涉及到的关键技术:

大数据采集技术是指通过 RFID 数据、传感器数据、社交网络交互数据及移动互联网数据等方式获得各种类型的结构化、半结构化及非结构化的海量数据。

大数据预处理技术主要是指完成对已接收数据的辨析、抽取、清洗、填补、平滑、合并、规格化及检查一致性等操作。

大数据存储及管理的主要目的是用存储器把采集到的数据存储起来,建立相应的数据库,并进行管理和调用。

大数据的应用类型很多,主要的处理模式可以分为流处理模式和批处理模式两种。批处理是先存储后处理,而流处理则是直接处理。

大数据处理的核心就是对大数据进行分析,只有通过分析才能获取很多智能的、深入的、有价值的信息。

在大数据时代下,数据井喷似地增长,分析人员将这些庞大的数据汇总并进行分析,而分析出的成果如果是密密麻麻的文字,那么就没有几个人能理解,所以我们就需要将数据可视化。

数据可视化技术主要指的是技术上较为高级的技术方法,这些技术方法通过表达、建模,以及对立体、表面、属性、动画的显示,对数据加以可视化解释。

㈢ 工业大数据特征有哪些 大数据工程师来告诉你

【导语】工业大数据是智能制造的核心,以“大数据+工业互联网”为基础,用云计算、大数据、物联网、人工智能等技术引领工业生产方式的变革,拉动工业经济的创新发展,那么工业大数据特征有哪些呢?下面大数据工程师来告诉你吧。

1、准确性(accuracy):

主要指数据的真实性、完整性和可靠性,更加关注数据质量以及处理、分析技术和方法的可靠性。对数据分析的置信度要求较高,仅依靠统计相关性分析不足以支撑故障诊断、预测预警等工业应用,需要将物理模型与数据模型结合,挖掘因果关系。

2、闭环性(closed-loop):

包括产品全生命周期横向过程中数据链条的封闭和关联以及智能制造纵向数据采集和处理过程中,需要支撑状态感知、分析、反馈、控制等闭环场景下的动态持续调整和优化。

3、多样(variety):

指数据类型的多样性和来源广泛。工业数据分布广泛,分布于机器设备、工业产品、管理系统、互联网等各个环节,并且结构复杂,既有结构化和半结构化的传感数据,也有非结构化数据。

4、数据容量大(volume):

数据的大小决定所考虑的数据的价值和潜在的信息。工业数据体量比较大,大量机器设备的高频数据和互联网数据持续涌入,大型工业企业的数据集将达到PB级甚至EB级别。

5、快速(velocity):

指获得和处理数据的速度。工业数据处理速度需求多样,生产现场级要求分析时限达到毫秒级,管理与决策应用需要支持交互式或批量数据分析。

6、强关联性(strong-relevance):

一方面,产品生命周期同一阶段的数据具有强关联性,如产品零部件组成、工况、设备状态、维修情况、零部件补充采购等;另一方面,产品生命周期的研发设计、生产、服务等不同环节的数据之间需要进行关联。

7、价值密度低(value):

工业大数据更强调用户价值驱动和数据本身的可用性,包括:提升创新能力和生产经营效率及促进个性化定制、服务化转型等智能制造新模式变革。

8、时序性(sequence):

工业大数据具有较强的时序性,如订单、设备状态数据等。

关于工业大数据特征,就和大家分享到这里了,中国社会发展至今,大数据的应用正在逐渐普及,所以未来前景不可估量,希望想从事此行业的人员能够合理选择。

㈣ 大数据处理的关键技术都有哪些

大数据关键技术涵盖数据存储、处理、应用等多方面的技术,根据大数据的处理过程,可将其分为大数据采集、大数据预处理、大数据存储及管理、大数据处理、大数据分析及挖掘、大数据展示等。

1、大数据采集技术

大数据采集技术是指通过 RFID 数据、传感器数据、社交网络交互数据及移动互联网数据等方式获得各种类型的结构化、半结构化及非结构化的海量数据。

因为数据源多种多样,数据量大,产生速度快,所以大数据采集技术也面临着许多技术挑战,必须保证数据采集的可靠性和高效性,还要避免重复数据。

2、大数据预处理技术

大数据预处理技术主要是指完成对已接收数据的辨析、抽取、清洗、填补、平滑、合并、规格化及检查一致性等操作。

因获取的数据可能具有多种结构和类型,数据抽取的主要目的是将这些复杂的数据转化为单一的或者便于处理的结构,以达到快速分析处理的目的。

3、大数据存储及管理技术

大数据存储及管理的主要目的是用存储器把采集到的数据存储起来,建立相应的数据库,并进行管理和调用。

4、大数据处理

大数据的应用类型很多,主要的处理模式可以分为流处理模式和批处理模式两种。批处理是先存储后处理,而流处理则是直接处理。

㈤ 大数据方面核心技术有哪些

简单来说,从大数据的生命周期来看,无外乎四个方面:大数据采集、大数据预处理、大数据存储、大数据分析,共同组成了大数据生命周期里最核心的技术,下面分开来说:

㈥ 工业大数据包括哪些工业大数据应用在哪些方面

【导读】众所周知,第二次世界大战也称为工业革命,可见工业在生活中是多么的重要,现在工业也已经趋于人工智能化,不过还是处于前期的观望试运行阶段,今天我们就来了解一下大数据在工业方面的应用有哪些,一起来看看吧!

大数据在工业中的应用有哪些?

从需求角度来看,目前国内制造企业对大数据的需求较为明显,但很多用户仍处于观望和试验阶段,不知道如何进行。因此,对于大数据服务提供商来说,有必要结合行业业务,寻找合适的应用场景。

工业大数据的应用有哪些?

互联网给传统制造业带来了挑战,而互联网大数据可以为企业管理者和参与者提供一个新的视角,通过技术创新和开发,以及对数据的全面感知、收集、分析和共享,来审视制造业价值链。所带来的巨大价值正在被传统企业所认可。

然而,不同于目前互联网大数据的火热,工业大数据的应用对于企业来说有着很高的门槛。与互联网不同,行业大数据与行业业务密切相关。因此,对企业的行业积累和对行业业务的深入了解都有很高的要求。此外,行业内的大数据分析比较准确,逻辑关系非常清晰。

工业大数据的应用有哪些?大数据在工业中的应用有哪些?通过大数据分析,企业可以使部门之间的数据更加协调,从而准确预测市场需求缺口。同时,通过更加灵活的工艺管理和更加自动化的生产设备装配调度,实现智能化生产。然而,据我们所知,在中国从事大数据应用的公司并不多。然而,拥有自主知识产权和核心技术的企业并不多。要做好工业大数据的应用,需要有一套严谨的数据推理逻辑,以及平台和工具。目前,国内大数据应用企业还没有足够的能力满足这一需求。

然而,仍有一些大型工业企业处于应用的前沿。以唐山钢铁集团为例,通过引进国际最先进的生产线,实现实时数据采集,与涵宇等企业合作,深入挖掘行业大数据价值,实时生产监控、生产调度、产品质量管理、能源控制等。此外,先进制造企业基于大数据在行业中的应用,将产品、机器、资源、人有机结合,推动基于大数据分析和应用的制造业智能化转型。

综上所述,在“互联网+”时代,用户需求具有实时性、小批量、碎片化、更新快等特点,对传统制造业提出了挑战。工业大数据有其鲜明的特点。随着信息化和工业化的融合,产业大数据的应用为制造业转型升级开辟了一条新途径。深入探讨工业大数据在制造过程中的应用场景和应用,将有利于更好地发挥其支撑作用。

以上就是小编今天给大家整理的关于“工业大数据包括哪些?工业大数据应用在哪些方面?”的相关内容,希望对大家有所帮助。总的来说,大数据的价值不可估量,未来发展前景也是非常可观的,因此有兴趣的小伙伴,尽早着手学习哦!

㈦ 大数据分析的技术包括哪些

大数据技术,就是从各种类型的数据中快速获得有价值信息的技术。大数据领域已经涌现出了大量新的技术,它们成为大数据采集、存储、处理和呈现的有力武器。智能职涯(bigdata-job)总结了大数据处理关键技术一般包括:大数据采集、大数据预处理、大数据存储及管理、大数据分析及挖掘、大数据展现和应用(大数据检索、大数据可视化、大数据应用、大数据安全等)。

㈧ 大数据技术包括哪些

大数据处理关键技术一般包括:大数据采集、大数据预处理、大数据存储及管理、大数据分析及挖掘、大数据展现和应用(大数据检索、大数据可视化、大数据应用、大数据安全等)。

㈨ 请问大数据的关键技术有哪些

分布式计算,非结构化数据库,分类、聚类等算法。

大数据包括结构化、半结构化和非结构化数据,非结构化数据越来越成为数据的主要部分。据IDC的调查报告显示:企业中80%的数据都是非结构化数据,这些数据每年都按指数增长60%。

(9)工业大数据获取技术有哪些构成扩展阅读:

大数据(Big data)通常用来形容一个公司创造的大量非结构化数据和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。

大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapRece一样的框架来向数十、数百或甚至数千的电脑分配工作。

大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。

阅读全文

与工业大数据获取技术有哪些构成相关的资料

热点内容
宝马最怕什么电动车 浏览:674
奔驰的轮胎为什么易爆 浏览:996
工业门安装怎么选 浏览:297
奔驰招聘为什么要确认邮箱 浏览:973
金沙汽车站附近小区有哪些 浏览:315
奔驰油是多少升 浏览:735
汽车防尘网怎么解决 浏览:890
宝马3改音响多少钱 浏览:11
宝马10万左右买什么车 浏览:897
汽车天窗模糊怎么处理 浏览:816
汽车如何进行定速巡航 浏览:947
奔驰车保养机油多少升 浏览:303
宝马看多少油 浏览:116
奔驰发动机电脑进油怎么修 浏览:946
18款奥迪a8多少钱 浏览:849
奔驰水在哪里加 浏览:720
买什么工业机械能赚钱 浏览:954
宝马x1油滤网在哪里 浏览:482
荣威汽车屏幕太亮如何调节亮度 浏览:594
佛山的工业区分布的位置如何 浏览:379